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&/ Abstract i

A runtime monitoring system for detecting and describing tasking crrors in Ada programs is presented.

Basic concepts for classifying tasking crrors, called deadness crrors, are defined. These concepts indicate
which aspects of an Ada computation must be monitored in order to detect deadness errors resulting from
attempts to rendezvous or terminate. They also provide a basis for the definition and proof of correct
detection. Descriptions of dcadness errors are given in terms of the basic concepts. L
The monitoring system has two parts: (1) a scparatcly compiled runtimc monitor that is added to any Ada *
source text to be monitored, and (2) a pre-processor that transforms the Ada source text so that necessary
descriptive data is communicated to the monitor at runtime. Somc basic preprocessing transformations and
an abstract monitoring for a limited class of crrors were previously prescnted 'i {2l. Here an Ada {
implementation of a monitor and a more cxtensive set of pre-processing transformati
system provides an experimental automated tool for detecting deadness crrors in Ada83 tading and supplies
useful diagnostics. The usc of the runtime monitor for debugging and for programming evasive actions to
avoid imminent crrors is described and examples of experiments are given.
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Jg ' 1. INTRODUCTION

Errors caused by failure in communication between parallel threads of control in a computational
system are called deadness errors. As a consequence of such failures, certain threads of control (or
sometimes all threads in an entire system) cannot proceed with their computations and hence
become "dead”. Deadness errors in generai occur unpredictably. Whether or not a possible
deadness error in a system will occur during system operation may depend on a multitude of external
factors, e.g. compilation techniques, run-time scheduling, 170 processing times and external
interrupts. They are often extremely difficult to reproduce and locate using current testing methods.

T e T —— T

Deadness errors have been described in the past by concepts such as deadlock, blocking, and
starvation, These early concepts provided meaningful classification of certain kinds of errors that 1
: could occur in 1960’s vintage parallel (or pseudo parallel) systems such as simple operating systems. '
1 However they are too vague for describing the kinds of deadness error tiiat can occur in a paraliel 1
system implemented using the multi-tasking facilities of Ada. For example, problems involving

dependent tasks may prevent a Master from terminating [Ada 83, section 9.4]. Such errors could

sometimes be described either as deadlock or blocking, but either terminology is essentially

3 inaccurate. The need to develop new descriptive terminology becomes even more obvious in systems

i using dynamic activation of tasks. The description must not only indicate the cause of the error but

E must also relate the dynamically generated names of the tasks involved with the origin of those tasks

' in the source text. Before we can expect to develop an ability to deal with deadness in future parallel

systems, we must first provide adequate methods of classification and description.

-
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When dealing with deadness in Ada or other languages of similar complexity, it Is useful to divide the
problem into three sub-problems: (1) detection, (2) description, and (3) avoidance. Detection
involves recognizing a dead state, and usually requires less information than description. Description
involves providing sufficient information to locate the source of an error in Ada text. Avoidance
involves both style guidelines for constructing error-free systems, and programming techmques for
evasion of imminent errors at run-time.

In this paper we Investigate the application of run-time monitoring methods to these three sub-
problems. Alternative methods of eliminating deadness errors based on static analysis at compile
time are not addressed in this paper. So far, the known static analysis methods are very difficult and
time-consuming in the general case [5].

In Chapter 2, concepts for classifylng deadness errors in Ada tasking are defined. These concepts
are derived from the informal semantics of Ada tasking given in [1]. They form a complete set in the :
sense that an operational description of Ada tasking can be given using only these concepts. Our

monitor implementation is based on these concepts. However, we feel that our present set of '
concepts should be treated as tentative. It is possible to define other complete sets of concepts.

Alternative concepts with advantages over the present set may emerge as experience In this area
accumulates.

Our monitor system has two parts: (1) a separately compiied run-time monitor written in Ada, and (2)
a preprocessor that transforms Ada source text so that necessary descriptive data is communicated
to the monitor at run-time. The result of applying the preprocessor to any legal Ada program is a
modified program which Is again a iegal Ada program and contains the monitor. When this modifled
program is run, sufficient information about tasking activities in the originai program wili be passed to '

J W - b 3 B = " = P --
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the monitor, enabling it to detect imminent dead states and provide descriptive information. The
transformations currently implemented in our present preprocessor extend the set of transformations
previously given in [2] in two ways: (1) the set of deadness errors detected by the monitor is extended
to include errors involving the inability to terminate, (2) the monltored data is extended to include data
necessary to give an adequate description of a deadness error for the purpose of debugging and
evasive action. Also the previous paper lacked discussion of many important implementation details
upon which the correctness of an actual implementation depends.

The present monitor has a number of deficiencies. It does not work correctly on programs that use .
task abortion or priorities or execute tasking statements during elaboration of declarative parts. It will
| not detect deadness errors due to task communication by means other than rendezvous (e.g. by
I shared variables). The implementation is described here in sufficient detail to indicate how run-time
monitoring techniques can be extended beyond the capabilities of our present monitor to detect and
| diagnose a wider class of deadness errors. i

An Ada implementation of the run-time monitoring system is described in Chapter 3. This description
encompasses (1) the descriptive data about tasking states that is monitored, (2) representation of the
descriptions and processing to detect errors, and (3) structural design of the monitor. The monitored
data must be sufficient both for detection of deadness and for providing diagnostics. The actual
monitor data structures and procedures must correctly implement representations of scheduling
states (as defined in Chapter 2); any monitor procedure must always terminate, preferably as quickly
as possible. The actual design (structure) of the monitor is an important consideration both for run-

i time efficiency and to reduce recompilation if the monitor system is altered for a special application.

f The design of the present monitor is simple and conservative to ensure correctness; more efficlent
distributed designs are currently being developed.

Chapter 4 describes the preprocessing transformations applied to Ada source text. The description
deals with the complete set of transformations that are currently implemented. The details are
complex; our description is therefore presented informally and relies on illustrative examples. The
preprocessor is implemented in SNOBOL,; reimplementation in Ada is planned.

The monitoring system may be used not only for recognition of errors but also for evasive action
programming. Essentially, the monitor "knows"” a deadness error is certain to happen (if the
computation continues normally) before it occurs. Warnings (e.g. Ada exceptions) may therefore be
propagated to the monitored program before the error occurs, thus enabling it to evade the error by
taking some abnormal course of action. Such evaslon may be temporary in that the error may
become imminent again, but the program can continue useful operation for a time. It may then have
to evade again, and 80 on. These evasive action techniques need to be Investigated and developed
since they may be a very useful method of keeping large multi-tasking systems in operation In the
presence of deadness errors. Eventually one would hope to be able to determine at compile time that 3
such systems are free of deadness errors, but until the necessary theory of static detection is b
developed, evasive action may become just as important a way of dealing with deadness errors as :
testing methods are for most other kinds of errors today. Indeed, If a system has to deal with

TERR

- unreliable elements, as happens In many practical applications, proofs of freedom from deadness i
cannot be given and evasive action techniques based on run-time monitoring could become a 1
standard programming practice.

¢ Some techniques for evasive actlon programming are given In Chapter 5. These are very modest and
represent just a beginning. Examples of monitoring experiments for debugging and evasive actlon
are given in Chapter 6.

S A ) .-:h“;“w SR il i 3 a




1. INTRODUCTION 3

The current experimental monitor is programmed in Ada and compiled using the Adam compiler at
Stanford [4]. Since Adam does not support all of Ada83, some parts of the monitor implementation
have used circuitous techniques. This is especially evident in our implementation of evasive action;
warnings are implemented by means of extra parameters of the monitor entries instead of exceptions
because Adam does not support exception propagation during task rendezvous.

Our run-time monitor implemented in Ada is an independent source level tool. One can argue that the
monitor should be a part of the underlying run-time supervisor. Incorporating the monitor into the
supervisor has several advantages, including: (7) Most of the preprocessing can be omitted, since
the monitor can make use of calls to the supervisor inserted by the compiler, and the supervisor's 1
representation of task IDs. (2) The monitor's representation of the state of task interactions will be |
more accurate since it is able to observe the program's actual scheduling state (however this may not
be true in the case of a supervisor distributed over a muitiple CPU system). (3) The monitor and the
supervisor can share a single data structure, rather than maintaining two copies of almost identical 1
data. Conversely, separating the monitor from the run-time supervisor also has advantages. (1) It '
aliows us to focus on deadness monitoring independent of specific supervisors and scheduling
algorithms. Since both run-time monitors and supervisors depend on currently active research areas
(deadness error detection and description techniques on one hand, and implementation of Ada
tasking semantics on the other), the divide and conquer approach of separating out the monitor
makes the development of both tools easier. If the run-time supervisor is also implemented in Ada, it
should be refatively easy to integrate the two packages at an appropriate time in the future. (2)
Portability: a separate run-time monitor in Ada is completely portable, being processable by any
compiler and executable in any Ada environment; a monitoring system integrated into a particular
supervisor will aimost certainly be dependent on the underlying machine and implementation of
tasking. (3) Source level monitoring could be particularly advantageous in integrating compile-time
and run-time deadness error detection techniques as advocated in [6] where the choice of monitor
may depend on features of the source program. 4
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2. DEFINITIONS

This chapter presents a set of concepts that are the basis for defining deadness errors and
implementing the monitoring system. These concepts are also used to define a notion of "correct
monitoring”.

2.1 TASK STATUSES

According to the semantics of tasking [1] a task may be in any one of the following statuses; a status
has information associated with it:

1. Running: a task in this status may be run. This is the only status in which a task may run.

2. Calling: task t has issued an entry call, s.e, to task s, which is neither conditional nor
timed. The task s and the entry e are associated with the Calling status of t.

3. Accepting: a task t is waiting for an entry call at an accept statement or at a selective
wait statement that does not have an else clause, open terminate alternative, or an open
delay alternative. The set of entries being waited for (i.e., the entry of the accept or those
entries corresponding to open accept alternatives of the select) is associated with the
Accepting status of t.

4. Select_Terminate: a task t is at a selective wait statement with an open terminate
alternative; the set of entries corresponding to open accept alternatives and the set of
tasks dependent on t are associated with the Select_Terminate status of t.

5. Select_Dependents_Completed: task t is at a selective wait statement with an open
terminate alternative and all dependent tasks have reached either Terminated status or
Select__Dependents__Completed status. The set of entries corresponding to open
alternatives of the select statement is associated with this status.

6. Block__Waiting: task t has reached the end of an inner block or subprogram and is
waiting for the tasks dependent on the inner scope to terminate; the set of tasks
dependent on the block or subprogram is associated with the Block_Waiting status of t.

7. Completed: task t has completed. The set of tasks dependent on t is associated with
the Completed status of t.

8. Terminated: task t is terminated. No additional information is associated with this
status.

Notes:
A task executing a delay or else part of a selective wait statement is considered to be in status

Running

Blocked: A task in any of the statuses 2 - 8 is said to be blocked.

Finished: A task is finished if it has status Terminated or Select_Dependents_Completed. (Note: as
a consequence, if a task is finished then all its dependents are finished.)

tiais
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[ 2. DEFINITIONS

This set of statuses and associated information is sufficient to describe that part of the Ada semantics
of task rendezvous that determines the schedulability of a task. Such a description may be given by
means of a status change diagram indicating how the semantics of rendezvous determinzas the status
changes of a task. Some status changes of task t are direct in the sense that the action of t itself
causes the change. Other status changes of t are indirect in the sense that they are a consequence
of the state of the tasking system and are not caused by an action of t itself.

Direct Status Changes:

Running — Calling -- Simple entry call issued.
Running — Accepting -- Accept statement or set of accept
-- alternatives reached.
Running — Select_Terminate -- Selective wait with open terminate
-- alternative reached.
Running — Block_Waiting -- End of inner block or subprogram reached.
Running — Completed -- End of task body reached.
indirect Changes:
Calling — Running == Rendezvous completed.
Running — Calling == Conditional or timed entry call
: == accepted.
Accepting — Runaning -~ Open entry is called.

Select_Terminate
Select_Terminate

Running -- Open entry is called.
Select Dependents _Completed
- All dependents of task finish.

L

Select_Dependents_Completed — Terminated -- Master terminates.

Select_Dependents_Completed — Running -- Open entry is called.

Block_Waiting — Running -- All dependents of block finish.

Completed ~ Terminated -- Alldependents of task finish.
Notes:

A task executing a delay statement is in status Running. The indirect status change from Accepting
to Running occurs when the entry call is issued rather than when the rendezvous is initiated. A task
changes status from Running to Calling after having issued a conditional or timed entry call only if the
call is accepted (this status change is' therefore indirect). A task which executes a selective wait
statement will usually change from Running to Accepting. A task which executes the else part (or
delay alternative) of a select statement remains in status Running.

Our indirect status change algorithm for the terminate alternative differs from Ada83. The two
algorithms are equivalent. When a subtree of finished tasks can be terminated, our status changes
terminate from the top down. The Ada LRM terminates tasks from bottom up In both cases, the
whole subtree can be terminated (see Section 3.3).

2.2 SCHEDULING STATES AND DEADNESS ERRORS

For a given input, a program P may have many different possible computations. Each possible
computation is the result of a legal Ada scheduling of the runnable tasks. Here, the word
"scheduling” is used in a very broad sense to reflect simply the order in which changes of status
occur among the individual tasks of P. Different orders may result from different scheduling
algorithms for multiplexing tasks on a single CPU, or from differing speeds of CPU's in a
multiprocessor system. The details of the underlying scheduling do not concern us in this paper. We
are concerned only with observable differences in the sequence of status changes. It should be
noted that different schedulings may result in different outputs from the computation, e.g. in the case
where P is monitoring its own status changes.

o - g g oo
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Task Identifiers. Each task that is activated during a computation of a program is assigned a unique
name called its identifier. It is assumed that a task can access its own identifier and the identifier of
any task thatis visible to it. :

Execution. An execution of P is a sequence of pairs consisting of a task identifier and a simple
statement such that: i

1. the task identifier of the first pair identifies the main program;

2. the task identifier of the nth pair (tn. c n> has status Running after the execution of the
statements in the previous pairs by the named threads of control;

3. as a consequence of the completed execution of the statements in the previous pairs in
the sequence by the named threads of control, t » May legally complete execution of the
simple statement, ¢ .

Executions correspond to computations of P on a single CPU. An execution can be constructed from
an actual computation. When a simple statement completes normally, a pair consisting of the
identifier of the executing thread of control followed by the simple statement is added to the execution
sequence. Conversely any execution corresponds to an actual computation on a single CPU under
some scheduling. Since the semantics of Ada are independent of the number of CPU's, definitions
based on this imposed linearization of tasking computations are equivalent to computations under
any scheduling.

Notes:

It is convenient to consider begin and end as simple statements in the definition of execution.
Statements appear in executions in positions corresponding to their completion (i.e., normal
termination). Completion of a subprogram call follows completion of the subprogram body. For
example, if task t calls procedure p, then the simple statements executed during p's execution will
appear in an execution pair for t before the procedure call appears. An entry call completes when the
calling task is placed on the corresponding entry queue or the call is accepted; the calling task does
not return to status Running until completion of the rendezvous. If a task t makes an entry call, s.e,
then the pair <t, s.e> will appear before any pairs containing statements in an appropriate accept
body, and pairs representing completion of an accept body must appear before any further pair
containing t.

The concept of execution described here can be given a formal definition in terms of transition rules
similar to the operational semantics for Ada in [3). We may therefore use the notions "computation”
and "execution” interchangeably in the following discussion.

Scheduiing. A scheduling is an activity which may change the execution sequence of P given a fixed
input.

Task-Status Pairs. A task-status pair is an ordered pair consisting of a task identifier as the first
element and a status as the second element (notation: <t, s>).

Scheduling State. A scheduling state is a set of task-status pairs such that no two pairs have the
same task identifier. .

A scheduling state is.associated with every positinrn in an execution of P. A scheduling state at a
point is a set of task-status pairs such that each {.._< activated up to that point in the execution is the
first element of exactly one pair and has its status as the second element. If <t,s> is a member of state
S, then task t has status s in S.
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Sequences of Scheduling States. A computation of program P has an associated linear sequence
of scheduling states. Each new state in the sequence results from the previous state by a status
change by (or activation of) one task. Simultaneous status changes are ordered arbitrarily; an
indirect status change follows the status change of the task causing it. All tasks are activated in
Running status.

Deadness Error. A deadness error is a scheduling state occurring in a computation of P in which
some task t is blocked but not terminated, and there can be no possible continuation of that
computation of P in which the status of t has changed. When such an error occurs, task t is said to
be dead.

Potential Deadness Error. Program P has a potential deadness error if there is an input and a
possible computation of P such that the associated sequence of scheduling states contains @
deadness error.

Some deadness errors can be described as follows:

Giobal Blocking is a scheduling state in which no task has status Running, no (indirect) status
changes are possible, and not every task has status Terminated.

Circular Deadlock. A circular deadlock is a deadness error in which a subset of tasks are all in
status Calling and the calls are to entries of members of the subset.

Example 1: Deadness involving inability to terminate.

task T1 Is
entry E1;
end T1;

task body T1 is
task T2;
task body T2 is
begin

TS B,

end T2;

begin
nuli;

end T1;

A dead state will occur in which T2 has status Calling (T1.E) and T1 has status Completed. These
statuses can never change. Since T2 is dependent on T1, T1 cannot terminate; and T2 can never
leave Calling status. Our monitor will detect this error.

Example 2: Deadness occurring during elaboration.

declare
task T1 is
entry E1;
end T1;

o
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2. DEFINITIONS 9

function F return INTEGER Is
begin
T1.E1;

end F;
X : INTEGER := F;

begin

Initialization of X requires the completion of an entry call to T1; T1 will not be activated until the
elaboration of the declarative part is completed. This elaboration leads to a dead state in which the
elaborating task has status Calling (T1.E1). Our monitor will not detect this error.

Notes:

Deadness does not include many situations commonly referred to as starvation which result from the
underlying scheduling (in the broad sense used above). Whether or not a task is dead will often
depend on properties of the program P. Our run-time monitoring techniques detect dead states that
can be recognized using only the syntax and tasking semantics of the programming language, Ada.

2.3 MONITORED PROGRAMS

Run-time monitoring for deadness errors involves modifying a given program P and adding a
monitoring system M. The program P is modified so that any activated task will have a unique
identifier, and tasks may identify each other and communicate status changes to M. The resulting
program, P’, is called a monitored program. It is important to establish that the original program P
and the transformed program P’ have the "same” set of potential deadness errors in some sense.
The next set of definitions establish when P and P' can be said to possess the same potential
deadness errors. These definitions are very general because they must take account of the possible
dynamic creation of tasks in Ada and corresponding dynamic allocation of task identifiers.

Correspondence: We assume there is a textual correspondence between P and P’ such that:

1. every declarative region in P corresponds to a declarative region in P’,

2. every declaration in P of a type or program unit (in the Ada sense) corresponds to a
declaration in P’ of the same kind,

3. every objectin P corresponds to an object or component aobject in P' of the same kind,

4. every statement in P corresponds to a statement in P' of the same kind,

5. declarations, objects, and statements in a region R in P correspond to declarations,
objects, and statements in the corresponding region R’ In P’

Notes:

Any object declared in P corresponds to an object (or component) declared in P' of the same kind, In
particular tasks correspond to tasks. However, not every declaration or statement in P' need have a
correspondence in P.

Corresponding Executions. Let E and E' be executions of P and P' respectively. Assume there is a
textual correspondence between P and P'. Then E and E’ correspond if all task-statement pairs of E

i
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can be placed in a correspondence with task-statement pairs in E' according to the following
inductive test: Suppose that the first n pairs of E correspond to pairs (in the same order) among the
first m pairs of E' (m 2> n), and that there is a one — one correspondence between all the task
identifiers that have occurred so far in E and a subset of those in E'. Let the nth. and mth. pairs be
(tn. cn> inEand <t , cm> in E'.

1. if statements Cm and ¢ , are in correspondence (under the textuai correspondence
between P and P'), then both the pairs and the tasks must correspond. If t R and tm
already correspond, then the pairs are said to correspond and the test proceeds to the
next pairs in E and E'. If neither task yet corresponds to a task, the pairs and the tasks are
placed in correspondence and the test proceeds to the next pairs in E and E';

2.if Cm does not correspond to any statement in P then <t o © n) is compared with the next
pairin E';

3. if neither of the first two cases holds, then the correspondence test fails.

Notes:

If two executions E and E' correspond then the task identifiers in E are in cne-one correspondence
with a subset of the task identifiers in E’. If t in E corresponds with t’' in E' then t executes code
corresponding to some of the code executed by t’, possibly interspersed with code in E' which has no
correspondence in E. Thus, in a general sense corresponding task identifiers are names for threads
of control that execute the same subcomputations (restricted to statements of P). E' may have tasks
that do not correspond to any task in E; this is a consequence of the assumption that the textual
correspondence between P and P’ is "into", i.e., P’ may be "bigger" than P.

Eguivalent Scheduiing States. If E and E' are corresponding executions of P and P' then
scheduling state S of E is equlvalent to a scheduling state S' of E' if for every task-status pair <t, s>
in S the task-status pair <t’, s> is in $' where t and t' correspond in E and E’, and ali other tasks of S’
are blocked.

Equivalent Potentlal Errors. P and P’ have equivalent potentiai deadness errors if for every
potentiai deadness error of P occurring in execution E, say, there is a corresponding execution E’ of
P’ in which an equivaient deadness error occurs, and conversely.

Note: b ,
"Converseiy” means the following: if a deadness error S' occurs in execution E' of P' then there i3 an
execution E of P such that E and E’ correspond and a deadness error S equivalent to S’ occurs in E.

Correct Monltoring: Correctness is taken to mean: (7) for any potential deadness error of the
originai program P there is an equivaient potential deadness error in the monitored program P’ and
conversely, (2) in any computation of P’, if the monitor detects a deadness error, it will do so before
that error occurs and that error wiil occur if the computation continues normally, (3) certain kinds of
deadness errors, including giobai blocking and circuiar deadiock wiil aiways be detected.

Notes:

(1) means that addition of the monitor does not change the set of potentiai deadness errors of the
monitored program. (2) does not imply that the monitor wili detect every deadness error, as defined
in Section 2.2, but that any error it does detect wili be a future scheduling state of P'. (3)is a
compieteness requirement. '

A formal treatment of correctness with detaiied proofs is beyond the scope of this paper. Proof of
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correct monitoring can be based on properties of the monitor implementation (Chapter 3) and the
preprocessing (Chapter 4). The monitor implementation ensures that (7} all monitor entry calls
terminate; (2) the monitor correctly represents the scheduling state implied by any legal sequence of
monitor entry calls; (3) the monitor will detect any instances of global blocking or circular deadlock
arising in its representation. The preprocessing transforms P into P’ such that (7) there is a textual
] ) correspondence between P and P', {2) the monitor will be able to predict the occurrence of deadness
1 errors in P' correctly (Section 3.5), and (3) P and P’ have equivalent potential deadness errors.
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3. DEADNESS MONITOR.

The monitor detects deadness errors and provides diagnostic descriptions based on information
received from the preprocessed program. In our implementation this information consists of changes
of statuses and associated information (see Chapter 2). The monitor maintains, throughout the
execution d¢f the modified program, a "picture” of the program's scheduling state. This picture is
updated and checked for deadness errors when information is received from the program. In addition
to detection and diagnostics, the monitor also provides facilities for tracing status changes, querying
the current "picture” and undertaking evasive action to avoid a deadness error.

3.1 THE MONITOR STRUCTURE

The monitor is implemented in two units, a task and a package. The task is inserted into the program
by the preprocessor. The package is designed to be compiled separately; it contains the monitor's
data structure and the procedures that act upon it. It is compiled only once, and then linked to each
program to be monitored. The monitor task’'s main purpose is to protect the monitor package. The
preprocessed program communicates status change information to the task by means of entry call
parameters. The monitor task then calls the appropriate procedure of the monitor package.
Buffering the information through a task in this way ensures that only one thread of control (the
monitor task) can update the monitor's data structure at a time. The monitor task also provides a
convenient place to encapsulate facilities that may need to be modified for specific applications; e.g.
an interactive version of the monitor has been implemented by modifying only the monitor task.

Outline of the Monitor Structure:
-- Separately compiled package:

package MONITOR_DATA_PACKAGE is ;
O -=- Data structures for the monitor's picture.

procedure INIT;
procedure A; -=- Subprograms for updating the
procedure B; == monitor’s picture.
end MONITOR_DATA_PACKAGE;
== Preprocessed Ada Program:

with MONITOR_DATA_PACKAGE;

e -=- QOutermost declarative part.

task MONITOR Is
entry A; -= Entries match monitor data package
entry B; == procedures.

end MONITOR; .
Do -=- Declarations of program to be monitored.
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task body MONITOR Is

begin
MONITOR_DATA_PACKAGE ., INIT;
while not MONITOR_DATA_PACKAGE .DONE loop
select
accept A do
MONITOR_DATA_PACKAGE .A;
end accept;
or
accept B do
MONITOR_DATA_PACKAGE.B;
end accept;
or

end select:

end loop:

end MONITOR;
wehd ‘ -=- Bodies of units in monitored program.

Note:
Ail rendezvous with the monitor task are assumed to terminate and not to nest (i.e., contain) other
rendezvous.

3.2 THE MONITOR PICTURE

The monitor maintains, at run-time, a picture of the program’s scheduiing state. The picture is in the
body of the monitor data package. This picture consists of: status and associated information for
each task, lengths of entry queues, task dependencies, and several global (to the monitor package)
counters. This picture is incompiete in that it does not reflect any interactions with the monitor task
itself. More important, at some points, this picture may not correspond exactly with the actual
scheduling state of the monitored program (see Section 3.5 for a discussion of how this can occur,
and why it is not critical).

3.2.1 TASK INFORMATION

Each activated task of the monitored program (except the monitor itself) is represented by a record in
the monitor's data structure. This record contains status and other information pertaining to the task.

type TASK_STATUS_RECORD Is -- Each task will have a record of
-=- this type to hold information
-=- associated with the task.

record
TASK_NAME ¢ NAME_STRING; -- The user-defined source text name.
* STATUS : TASK_STATUS; -- The status of this task.
CALLED_TASK : TASK_ID: == The task that this task has issued an
-=- entry call to.
CALLED_ENTRY : NAME_STRING: -- The entry being called.
PARENT_TASK : TASK_1D; -=- The task that this one depends on.

DEPENDENTS : ID_PTR; -=- A list of tasks depending on this task.




3. DEADNESS MONITOR. 15
NUM_WAIT_FOR : INTEGER; -~ The number of tasks that need to finish
-~ before this one can proceed.
LIST_PTR : ENTRY_LIST; ~=~ A pointer to the list of entries in this task
TRACE : BOOLEAN; ~~ True IFF trace information

-~ on this task is to be printed
end record;

The first component contains the task name. This string Is used only to relate the task to its
declaration in the Ada source text of the monitored program; it is not used in detecting errors. The
second component contains the task's status (see Section 2.1). The next two components contain
associated information for status Calling: the task and entry called. Following these are components
containing dependency information: a list of dependent tasks that this task is waiting on; the number
of those tasks that have not terminated; and this task's parent (see Section 3.2.3). An additional
component holds a pointer to the list of entries of the task. The last component contains a flag
indicating whether or not the task’s status changes should be traced. These records are stored in an
array in the monitor data package body and indexed by task 1Ds.

Note:
Some task status record components will be irrelevant, e.g. if a task has status Running then the
CALLED_TASK and CALLED_ENTRY components are irrelevant.

3.2.2 ENTRY INFORMATION

The monltor creates an entry record for each entry of a task just before that entry is first referenced at
a call, accept or selest statement. These records contain the unique string name for the entry
(created by the preprocessor, see 4.4), the number of tasks calling the entry, and a HERE__FLAG,
indicating if the task is currently waiting for (ready to accept) a call to the entry. All of the records for
a task's entries are stored in an unordered linked list referenced from the task’s status record.

type ENTRY_DATA_RECORD;
type ENTRY_LIST Is access ENTRY_DATA_RECORD;
type ENTRY_DATA_RECORD is

record
NAME : MAME_STRING: -- Unique string identifier.
QUEUE_SIZE : INTEGER -- Number of tasks calling.
HERE_FLAG : BOOLEAN ~- Waiting at entry.
NEXT ¢ ENTRY_LIST; -~- Restofthe entries.
end record;

3.2.3 DEPENDENCY LISTS

Keeping track of dependencies poses special problems for the monitor Implementation. If the
monitor were to hold all task dependency information, then it would have to maintain stacks of
masters for each task, and masters would have to be assigned unique IDs. To avoid this, lists of
dependent tasks are maintained in the monitored program itself. In each potential master of the
original program, the preprocessor inserts a list containing all of the tasks directly dependent on that
master (Section 4.1). The preprocessor Inserts an additional list In each task body (and main
program) containing all the sons of that task (Section 3.4). These dependency lists can only be
operated on by monitor procedures and are thereby protected from simultaneous access. Whenever
the monitor is required to have access to a dependency list (e.g. If that list contalns information
assoclated with the current status of a task — Section 2.1) it is passed a pointer t¢ that list.

- —— - e e -~ e
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3.2.4 GLOBAL BLOCKING

Three variables are used to enable the monitor to efficiently detect global blocking. The monitor
maintains counts of:

1. the number of tasks that have been activated, NUM_TASKS;
2. the number that are blocked, NUM_BLOCKED; and
3. the number that have terminated, NUM_TERMINATED.

If the number of tasks that are terminated is equal to the number of tasks that have been activated
then the program has terminated. Otherwise, if the number of tasks that are blocked and terminated
is equal to the number of tasks that have been activated, then global blocking has occurred. These
checks are done every time a task becomes blocked (for any reason) in the monitor's picture.

An additional boolean variable, DONE, is used to inform the monitor task that all of the other tasks
have terminated. This variable is declared in the visible part of the monitor package so it can be
examined by the monitor task.

3.3 TASK TERMINATION IN THE MONITOR’S PICTURE

The monitor must be able to distinguish between a global blocking situation and a program's normal
completion. This requires that the monitor recognize when tasks may be terminated. The monitor's
algorithm for changing a task’s status to Terminated is complex, involving several different monitor
entries. This section describes the algorithm in its entirety. The contribution of each monitor entry is
described in Section 3.4.

We define the sons of task t (or the main program) to be those tasks which:

1. directly depend on t;
2. directly depend on one of t's inner blocks; or
3. directly depend on a subprogram (or subprogram inner block) elaborated by t.

If task s is the son of task t, then task t is the parent of task s. This parent-son relationship forms a
tree structure. All tasks dependent on t will be located in the subtree rooted at t.

If task t has finished (section 2.1), then so have all the sons of t. Thus, by induction, all tasks In the
subtree rooted at t have finished.

When task t Is ready to complete, it passes the list of all its sons to the monitor and then reaches
Completed status. The monitor sets the PARENT_TASK component of the task status record for each
task on-the list to t's ID. The monitor stores the number of sons that have not yet finished in t's
NUM_WAIT_FOR component. As the sons of t finish, the NUM_WAIT_FOR count in t's status record will
be decremented; thus this component contalns the number of t's sons which have not yet finished.
By checking to see if task t's NUM_WAIT_FOR component is 0, the monitor can determine If all the
sons of t have finlshed. When this occurs, task t is terminated, along with all of its dependents (direct
and indirect) that are at seiect statements with open terminate alternatives. Since t has now
terminated, we may have to decrement the NUM_WAIT_FOR component of t's parent. The monitor
checks the PARENT_TASK component of t's status record. If it is non-empty (contains a valid task 10)
then the PARENT_TASK's NUM_WAIT_FOR count is decremented.

.
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A similar algorithm is used when a task t is ready to leave an inner block (or subprogram). The list of
dependents passed to the monitor will contain only those sons of t dependent on the inner block; only
these dependents affect t's NUM_WAIT_FOR count. When the count reaches 0, t is placed back into
status Running.

A task, t, reaching a select statement with an open terminate alternative (i.e, status Select_Terminate)
cannot terminate until all of its dependents have finished. Using the above algorithm, the monitor
changes t's status from Select__Terminate to Select_ Dependents__Completed when all of t's
dependents have finished. The dependents of t are not terminated yet. After t's master terminates, t
will be terminated, then t's sons will be terminated, and so on. This order of termination is top-down
instead of the bottom-up order specified in the Ada LRM, but since all such terminations are done
immediately (within a single monitor call), the order does not effect the correctness of the monitors’
picture.

Notes:

It is important to set the PARENT__TASK component of a status record only when the parent is waiting
on that task. Otherwise, the task may decrement its parent’'s NUM_WAIT_FOR count before the parent
is waiting for it (this could lead to incorrect results if the parent were waiting on an inner block).

It is also important to have the monitor modify the lists of dependents. When a task is attempting to
terminate, it passes the monitor a list of its dependents. If some other task creates a new dependent
of the first task, then the change in the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>